implicit function theorem, but we give a self-contained constructive proof of that theorem. The reader willing to accept the implicit function theorem can read the book without an advanced calculus background. Chapter 8 uses the Moore-Penrose pseudo-inverse, but is accessible to students who have facility with matrices. Exercises are placed at those points in the text where they are relevant. For U. S. universities, we intend for the book to be used at the senior undergraduate level or beginning graduate level. Chapter 2, which is on continued fractions, is not essential to the material of the remaining chapters, but is intimately related to the remaining material. Continued fractions provide closed form representations of the extreme solutions of some discrete matrix Riccati equations. Continued fractions solution methods for Riccati difference equations provide an approach analogous to series solution methods for linear differential equations. The book develops several topics which have not been available at this level. In particular, the material of the chapters on continued fractions (Chapter 2), symplectic systems (Chapter 3), and discrete variational theory (Chapter 4) summarize recent literature. Similarly, the material on transforming Riccati equations presented in Chapter 3 gives a self-contained unification of various forms of Riccati equations. Motivation for our approach to difference equations came from the work of Harris, Vaughan, Hartman, Reid, Patula, Hooker, Erbe & Van, and Bohner.

Global Attractor and Topological Chaos of Second-order Difference Equations in Discrete Hamiltonian Systems - 黃柏穎 2011

Difference Equations, Discrete Dynamical Systems and Applications - Martin Bohner 2015-12-01 These proceedings of the 20th International Conference on Difference Equations and Applications cover the areas of difference equations, discrete dynamical systems, fractal geometry, difference equations and biomedical models, and discrete models in the
natural sciences, social sciences and engineering. The conference was held at the Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (Hubei, China), under the auspices of the International Society of Difference Equations (ISDE) in July 2014. Its purpose was to bring together renowned researchers working actively in the respective fields, to discuss the latest developments, and to promote international cooperation on the theory and applications of difference equations. This book will appeal to researchers and scientists working in the fields of difference equations, discrete dynamical systems and their applications.

Recent Advances in Delay Differential and Difference Equations-Ferenc Hartung
2014-08-22 Delay differential and difference equations serve as models for a range of processes in biology, physics, engineering and control theory. In this volume, the participants of the International Conference on Delay

Differential and Difference Equations and Applications, Balatonfüred, Hungary, July 15-19, 2013 present recent research in this quickly-evolving field. The papers relate to the existence, asymptotic and oscillatory properties of the solutions; stability theory; numerical approximations; and applications to real world phenomena using deterministic and stochastic discrete and continuous dynamical systems.

Progress on Difference Equations and Discrete Dynamical Systems-Steve Baigent
2021-01-04 This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation
theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.

Dynamic Equations on Time Scales - Martin Bohner 2012-12-06 On becoming familiar with difference equations and their close relation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an introduction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equations and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.
Communications in Difference Equations
Saber N. Elaydi 2000-07-06 This collection of carefully refereed and edited papers were originally presented at the Fourth International Conference on Difference Equations held in Poznan, Poland. Contributions were from a diverse group of researchers from several countries and featured discussions on the theory of difference equations, open problems and conjectures, as well as related applications. Whether new to the area of research, or a veteran, this volume will be a valuable resource on the recent advances in the field of difference equations.

Symplectic Difference Systems: Oscillation and Spectral Theory - Ondřej Došlý 2019-09-06 This monograph is devoted to covering the main results in the qualitative theory of symplectic difference systems, including linear Hamiltonian difference systems and Sturm-Liouville difference equations, with the emphasis on the oscillation and spectral theory. As a pioneer monograph in this field it contains nowadays standard theory of symplectic systems, as well as the most current results in this field, which are based on the recently developed central object - the comparative index. The book contains numerous results and citations, which were till now scattered only in journal papers. The book also provides new applications of the theory of matrices in this field, in particular of the Moore-Penrose pseudoinverse matrices, orthogonal projectors, and symplectic matrix factorizations. Thus it brings this topic to the attention of researchers and students in pure as well as applied mathematics.

Discrete Dynamics and Difference Equations - Saber N. Elaydi 2010 This volume holds a collection of articles based on the talks presented at ICDEA 2007 in Lisbon, Portugal. The volume encompasses current topics on stability and bifurcation, chaos, mathematical biology, iteration theory, nonautonomous
systems, and stochastic dynamical systems.

Theory of Translation Closedness for Time Scales - Chao Wang 2020-05-05

This monograph establishes a theory of classification and translation closedness of time scales, a topic that was first studied by S. Hilger in 1988 to unify continuous and discrete analysis. The authors develop a theory of translation function on time scales that contains (piecewise) almost periodic functions, (piecewise) almost automorphic functions and their related generalization functions (e.g., pseudo almost periodic functions, weighted pseudo almost automorphic functions, and more). Against the background of dynamic equations, these function theories on time scales are applied to study the dynamical behavior of solutions for various types of dynamic equations on hybrid domains, including evolution equations, discontinuous equations and impulsive integro-differential equations. The theory presented allows many useful applications, such as in the Nicholson’s blowfiles model; the Lasota-Wazewska model; the Keynesian-Cross model; in those realistic dynamical models with a more complex hybrid domain, considered under different types of translation closedness of time scales; and in dynamic equations on mathematical models which cover neural networks. This book provides readers with the theoretical background necessary for accurate mathematical modeling in physics, chemical technology, population dynamics, biotechnology and economics, neural networks, and social sciences.

Focal Boundary Value Problems for Differential and Difference Equations - R.P. Agarwal 2013-03-09

The last fifty years have witnessed several monographs and hundreds of research articles on the theory, constructive methods and wide spectrum of applications of boundary value problems for ordinary differential equations. In this vast field of research, the conjugate (Hermite) and the right focal point (Abei) types of problems have received the
maximum attention. This is largely due to the fact that these types of problems are basic, in the sense that the methods employed in their study are easily extendable to other types of problems. Moreover, the conjugate and the right focal point types of boundary value problems occur frequently in real world problems. In the monograph Boundary Value Problems for Higher Order Differential Equations published in 1986, we addressed the theory of conjugate boundary value problems. At that time the results on right focal point problems were scarce; however, in the last ten years extensive research has been done. In Chapter 1 of the monograph we offer up-to-date information of this newly developed theory of right focal point boundary value problems. Until twenty years ago Difference Equations were considered as the discretizations of the differential equations. Further, it was tacitly taken for granted that the theories of difference and differential equations are parallel. However, striking diversities and wide applications reported in the last two decades have made difference equations one of the major areas of research.

Advances in Automatic Control — Mihail Voicu
2012-12-06 During the academic year 2002-2003, the Faculty of Automatic Control and Computer Engineering of Iași (Romania), and its Departments of Automatic Control and Industrial Informatics and of Computer Engineering respectively, celebrated 25 years from the establishment of the specialization named Automatic Control and Computer Engineering within the framework of the former Faculty of Electrical Engineering of Iași, and, at the same time, 40 years since the first courses on Automatic Control and Computers respectively, were introduced in the curricula of the former specializations of Electromechanical Engineering and Electrical Power Engineering at the already mentioned Faculty of Electrical Engineering. The reader interested to know some important moments of our evolution during the last five decades is invited to see the Addendum of this volume, where a short history is presented. And,
to highlight once more the nice coincidences, it must be noted here that in 2003 our Technical University "Gheorghe Asachi" of Iași celebrated 190 years from the emergence of the first cadastral engineering degree course in Iași (thanks to the endeavor of Gheorghe Asachi), which is today considered to be the beginning of the engineering higher education in Romania. Generally speaking, an anniversary is a celebration meant to mark special events of the past, with festivities to be performed solemnly and publicly according to a specific ritual.

Structure-Preserving Algorithms for Oscillatory Differential Equations II - Xinyuan Wu 2016-03-03 This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods. The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and scientists investigating oscillatory systems, as well as for teachers and students who are interested in structure-preserving algorithms for differential equations.

Difference and Differential Equations - Saber Elaydi This volume contains papers from the 7th International Conference on Difference
Equations held at Hunan University (Changsa, China), a satellite conference of ICM2002 Beijing. The volume captures the spirit of the meeting and includes peer-reviewed survey papers, research papers, and open problems and conjectures. Articles cover stability, oscillation, chaos, symmetries, boundary value problems and bifurcations for discrete dynamical systems, difference-differential equations, and discretization of continuous systems. The book presents state-of-the-art research in these important areas. It is suitable for graduate students and researchers in difference equations and related topics.

Proceedings of the First International Conference on Difference Equations-John R. Graef 1995-12-01 This volume presents papers delivered at the First International Conference on Difference Equations (FICDE) held at Trinity University in San Antonio, Texas, USA. During the course of this meeting, 66 papers were presented by participants from across the United States and more than 20 other countries. Topics of papers include chaotic dynamics, mathematical biology, robust control theory, stochastic differential systems, dynamics of satellite and rocket systems, theory of orthogonal polynomials, and epidemiological modelling. Many current expository papers will be of value to students and researchers in the mathematical and physical sciences.

Symmetries and Semi-invariants in the Analysis of Nonlinear Systems-Laura Menini 2011-05-06 This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion. The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong
geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design.

Differential and Difference Equations with Applications - Sandra Pinelas 2016-09-02 Aimed at the community of mathematicians working on ordinary and partial differential equations, difference equations, and functional equations, this book contains selected papers based on the presentations at the International Conference on Differential & Difference Equations and Applications (ICDDEA) 2015, dedicated to the memory of Professor Georg Sell. Contributions include new trends in the field of differential and difference equations, applications of differential and difference equations, as well as high-level survey results. The main aim of this recurring conference series is to promote, encourage, cooperate, and bring together researchers in the fields of differential & difference equations. All areas of differential and difference equations are represented, with special emphasis on applications.

The Theory of Differential Equations - Walter G. Kelley 2010-04-22 For over 300 years, differential equations have served as an essential tool for describing and analyzing problems in many scientific disciplines. This carefully-written textbook provides an introduction to many of the important topics associated with ordinary differential equations. Unlike most textbooks on the subject, this text includes nonstandard topics such as perturbation methods and differential equations and Mathematica. In addition to the nonstandard topics, this text also contains
contemporary material in the area as well as its classical topics. This second edition is updated to be compatible with Mathematica, version 7.0. It also provides 81 additional exercises, a new section in Chapter 1 on the generalized logistic equation, an additional theorem in Chapter 2 concerning fundamental matrices, and many more other enhancements to the first edition. This book can be used either for a second course in ordinary differential equations or as an introductory course for well-prepared students. The prerequisites for this book are three semesters of calculus and a course in linear algebra, although the needed concepts from linear algebra are introduced along with examples in the book. An undergraduate course in analysis is needed for the more theoretical subjects covered in the final two chapters.

Discrete Oscillation Theory - Ravi P. Agarwal 2005 This book is devoted to a rapidly developing branch of the qualitative theory of difference equations with or without delays. It presents the theory of oscillation of difference equations, exhibiting classical as well as very recent results in that area. While there are several books on difference equations and also on oscillation theory for ordinary differential equations, there is until now no book devoted solely to oscillation theory for difference equations. This book is filling the gap, and it can easily be used as an encyclopedia and reference tool for discrete oscillation theory. In nine chapters, the book covers a wide range of subjects, including oscillation theory for second-order linear difference equations, systems of difference equations, half-linear difference equations, nonlinear difference equations, neutral difference equations, delay difference equations, and differential equations with piecewise constant arguments. This book summarizes almost 300 recent research papers and hence covers all aspects of discrete oscillation theory that have been discussed in recent journal articles. The presented theory is illustrated with 121 examples throughout the book. Each chapter concludes with a section that is devoted to notes.
and bibliographical and historical remarks. The book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. Besides serving as a reference tool for researchers in difference equations, this book can also be easily used as a textbook for undergraduate or graduate classes. It is written at a level easy to understand for college students who have had courses in calculus.

Oscillation Theory for Difference and Functional Differential Equations - R.P. Agarwal 2013-06-29 This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ∼)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscillation of n-th order functional differential equations with deviating arguments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this
chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.

Positive Solutions of Differential, Difference and Integral Equations - R.P. Agarwal

2013-04-17 In analysing nonlinear phenomena many mathematical models give rise to problems for which only nonnegative solutions make sense. In the last few years this discipline has grown dramatically. This state-of-the-art volume offers the authors' recent work, reflecting some of the major advances in the field as well as the diversity of the subject. Audience: This volume will be of interest to graduate students and researchers in mathematical analysis and its applications, whose work involves ordinary differential equations, finite differences and integral equations.

Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations

M.D.S. Aliyu 2017-12-19 A comprehensive overview of nonlinear $H\infty$ control theory for both continuous-time and discrete-time systems, Nonlinear $H\infty$-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear $H\infty$-control, nonlinear $H\infty$-filtering, mixed $H_2/ H\infty$-nonlinear control and filtering, nonlinear $H\infty$-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter. Recent progress in developing computational schemes for solving the Hamilton-Jacobi equation (HJE) has facilitated the application of Hamilton-Jacobi theory in both mechanics and control. As there is currently no efficient systematic analytical or numerical approach for solving them, the biggest bottle-neck to the practical application of the nonlinear equivalent of the $H\infty$-control theory has been the difficulty in solving the Hamilton-Jacobi-Isaacs partial differential-equations (or
inequalities). In light of this challenge, the author hopes to inspire continuing research and discussion on this topic via examples and simulations, as well as helpful notes and a rich bibliography. Nonlinear H_∞-Control, Hamiltonian Systems and Hamilton-Jacobi Equations was written for practicing professionals, educators, researchers and graduate students in electrical, computer, mechanical, aeronautical, chemical, instrumentation, industrial and systems engineering, as well as applied mathematics, economics and management.

Symmetries and Integrability of Difference Equations - Decio Levi 2011-06-23 Difference equations are playing an increasingly important role in the natural sciences. Indeed many phenomena are inherently discrete and are naturally described by difference equations. Phenomena described by differential equations are therefore approximations of more basic discrete ones. Moreover, in their study it is very often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference equations. This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference ones. Each of the eleven chapters is a self-contained treatment of a topic, containing introductory material as well as the latest research results. The book will be welcomed by graduate students and researchers seeking an introduction to the field. As a survey of the current state of the art it will also serve as a valuable reference.

Advances in Difference Equations - Saber N. Elaydi 1998-01-29 The recent surge in research activity in difference equations and applications has been driven by the wide applicability of discrete models to such diverse fields as biology, engineering, physics, economics, chemistry, and psychology. The 68 papers that make up this book were presented by an international group of experts at the Second International Conference...
on Difference Equations, held in Veszprém, Hungary, in August, 1995. Featuring contributions on such topics as orthogonal polynomials, control theory, asymptotic behavior of solutions, stability theory, special functions, numerical analysis, oscillation theory, models of vibrating string, models of chemical reactions, discrete competition systems, the Liouville-Green (WKB) method, and chaotic phenomena, this volume offers a comprehensive review of the state of the art in this exciting field.

Half-Linear Differential Equations - Ondrej Dosly 2005-07-06 The book presents a systematic and compact treatment of the qualitative theory of half-linear differential equations. It contains the most updated and comprehensive material and represents the first attempt to present the results of the rapidly developing theory of half-linear differential equations in a unified form. The main topics covered by the book are oscillation and asymptotic theory and the theory of boundary value problems associated with half-linear equations, but the book also contains a treatment of related topics like PDE’s with p-Laplacian, half-linear difference equations and various more general nonlinear differential equations. - The first complete treatment of the qualitative theory of half-linear differential equations. - Comparison of linear and half-linear theory. - Systematic approach to half-linear oscillation and asymptotic theory. - Comprehensive bibliography and index. - Useful as a reference book in the topic.

Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control - Russell Johnson 2016-03-25 This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book
contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hamiltonian systems of general dimension. The properties of all these objects form the basis for the study of several themes concerning linear-quadratic control problems, including the linear regulator property, the Kalman-Bucy filter, the infinite-horizon optimization problem, the nonautonomous version of the Yakubovich Frequency Theorem, and dissipativity in the Willems sense. The book will be useful for graduate students and researchers interested in nonautonomous differential equations; dynamical systems and ergodic theory; spectral theory of differential operators; and control theory.

Difference Equations-Ronald E. Mickens
2015-03-06 Difference Equations: Theory, Applications and Advanced Topics, Third Edition provides a broad introduction to the mathematics of difference equations and some of their applications. Many worked examples illustrate how to calculate both exact and approximate solutions to special classes of difference equations. Along with adding several advanced to

Topological Methods for Differential Equations and Inclusions-John R. Graef
2018-09-25 Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the
corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.

Symplectic Geometric Algorithms for Hamiltonian Systems - Kang Feng 2010-10-18

"Symplectic Geometric Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development of numerical methodology for Hamiltonian systems is well motivated. Were it successful, it would imply wide-ranging applications.

An Introduction to Difference Equations - Saber N. Elaydi 2013-03-14

Integrating both classical and modern treatments of difference equations, this book contains the most updated and comprehensive material on stability, Z-transform, discrete control theory, asymptotic theory, continued fractions and orthogonal polynomials. While the presentation is simple enough for use by advanced undergraduates and beginning graduates in mathematics, engineering science, and economics, it will also be a useful reference for scientists and engineers interested in discrete mathematical models. The text covers a large set of applications in a variety of disciplines, including neural networks, feedback control, Markov chains, trade models, heat transfer, propagation of plants, epidemic models and host-parasitoid systems, with each section rounded off by an extensive and highly
selected set of exercises.

The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addresses challenging problems at the forefront of modern numerical analysis and presents a wide range of modern tools and techniques.

An Introduction to Difference Equations - Saber Elaydi 2006-01-27

A must-read for mathematicians, scientists and engineers who want to understand difference equations and discrete dynamics. Contains the most complete and comprehensive analysis of the stability of one-dimensional maps or first order difference equations. Has an extensive number of applications in a variety of fields from neural network to host-parasitoid systems. Includes chapters on continued fractions, orthogonal polynomials and asymptotics. Lucid and transparent writing style.
Advances in Computational Multibody Systems-Jorge A.C. Ambrósio 2005-07-05 This book contains contributions from the ECCOMAS thematic conference Multibody Dynamics 2003 that took place in Lisbon, Portugal.

Solving Differential Equations by Multistep Initial and Boundary Value Methods-L Brugnano 1998-05-22 The numerical approximation of solutions of differential equations has been, and continues to be, one of the principal concerns of numerical analysis and is an active area of research. The new generation of parallel computers have provoked a reconsideration of numerical methods. This book aims to generalize classical multistep methods for both initial and boundary value problems; to present a self-contained theory which embraces and generalizes the classical Dahlquist theory; to treat nonclassical problems, such as Hamiltonian problems and the mesh selection; and to select appropriate methods for a general purpose software capable of solving a wide range of problems efficiently, even on parallel computers.

Colloquium on Differential and Difference Equations-Miroslav Bartušek 2003

Lyapunov Inequalities and Applications-Ravi P. Agarwal

Nonlinear Analysis and Applications-V. Lakshmikantham 2003

Difference Equations-Walter G. Kelley 2001 Difference Equations, Second Edition, presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse

Advances in Dynamic Equations on Time Scales - Martin Bohner 2011-06-28

Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

Advances in Continuum Mechanics and Thermodynamics of Material Behavior - Donald E. Carlson 2012-12-06

The papers included in this volume were presented at the Symposium on Advances in the Continuum Mechanics and Thermodynamics of Material Behavior, held as part of the 1999 Joint ASME Applied Mechanics and Materials Summer Conference at Virginia Tech on June 27-30, 1999. The Symposium was held in honor of Professor Roger L. Fosdick on his 60th birthday. The papers are written by prominent researchers in the fields of mechanics, thermodynamics, materials modeling, and applied mathematics. They address open questions and present the latest development in these and related areas.
This volume is a valuable reference for researchers and graduate students in universities and research laboratories.